On the asymptotic behaviour of the solutions to the replicator equation
نویسندگان
چکیده
Selection systems and the corresponding replicator equations model the evolution of replicators with a high level of abstraction. In this paper, we apply novel methods of analysis of selection systems to the replicator equations. To be suitable for the suggested algorithm, the interaction matrix of the replicator equation should be transformed; in particular, the standard singular value decomposition allows us to rewrite the replicator equation in a convenient form. The original n-dimensional problem is reduced to the analysis of asymptotic behaviour of the solutions to the so-called escort system, which in some important cases can be of significantly smaller dimension than the original system. The Newton diagram methods are applied to study the asymptotic behaviour of the solutions to the escort system, when interaction matrix has Rank 1 or 2. A general replicator equation with the interaction matrix of Rank 1 is fully analysed; the conditions are provided when the asymptotic state is a polymorphic equilibrium. As an example of the system with the interaction matrix of Rank 2, we consider the problem from Adams & Sornborger (2007, Analysis of a certain class of replicator equations. J. Math. Biol., 54, 357-384), for which we show, for an arbitrary dimension of the system and under some suitable conditions, that generically one globally stable equilibrium exits on the 1-skeleton of the simplex.
منابع مشابه
Decay estimates of solutions to the IBq equation
In this paper we focus on the Cauchy problem for the generalized IBq equation with damped term in $n$-dimensional space. We establish the global existence and decay estimates of solution with $L^q(1leq qleq 2)$ initial value, provided that the initial value is suitably small. Moreover, we also show that the solution is asymptotic to the solution $u_L$ to the corresponding linear equa...
متن کاملOn the nature of solutions of the difference equation $mathbf{x_{n+1}=x_{n}x_{n-3}-1}$
We investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers. In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.
متن کاملThe comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation
In recent years, numerous approaches have been applied for finding the solutions of functional equations. One of them is the optimal homotopy asymptotic method. In current paper, this method has been applied for obtaining the approximate solution of Fisher equation. The reliability of the method will be shown by solving some examples of various kinds and comparing the obtained outcomes with the ...
متن کاملNovel methods to analyze the replicator equation and asymptotical behavior of its solutions
Selection systems and the corresponding replicator equations model the evolution of replicators with a high level of abstraction. In this paper we apply novel methods of analysis of selection systems to the replicator equations. To be suitable for the suggested algorithm the interaction matrix of the replicator equation should be transformed; in particular the standard singular value decomposit...
متن کاملA nonlinear second order field equation – similarity solutions and relation to a Bellmann-type equation - Applications to Maxwellian Molecules
In this paper Lie’s formalism is applied to deduce classes of solutions of a nonlinear partial differential equation (nPDE) of second order with quadratic nonlinearity. The equation has the meaning of a field equation appearing in the formulation of kinetic models. Similarity solutions and transformations are given in a most general form derived to the first time in terms of reciprocal Jacobian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2011